An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance.

نویسندگان

  • Yanjie Luo
  • Zhijuan Wang
  • Hongtao Ji
  • Hui Fang
  • Shuangfeng Wang
  • Lining Tian
  • Xia Li
چکیده

The import of proteins into the nucleus in response to drought is critical for mediating the reprogramming of gene expression that leads to drought tolerance. However, regulatory mechanisms involved in nuclear protein import remain largely unknown. Here, we have identified an Arabidopsis gene (AtKPNB1) as a homolog of human KPNB1 (importin β1). AtKPNB1 was expressed in multiple organs, and the protein was localized in the cytoplasm and nucleus. AtKPNB1 was able to facilitate nuclear import of a model protein. Null mutation of AtKPNB1 delayed development under normal growth conditions and increased sensitivity to abscisic acid (ABA) during seed germination and cotyledon development. Inactivation of AtKPNB1 increased stomatal closure in response to ABA, reduced the rate of water loss, and substantially enhanced drought tolerance. AtKPNB1 interacted with several importin α proteins, nucleoporin AtNUP62, and the Arabidopsis Ran proteins. Inactivation of AtKPNB1 did not affect the ABA responsiveness or the expression level or subcellular localization of ABI1, ABI2 or ABI5, key regulators of the ABA signaling pathway. Moreover, phenotypic analysis of epistasis revealed that AtKPNB1 modulates the ABA response and drought tolerance through a pathway that is independent of ABI1 and ABI5. Collectively, our results show that AtKPNB1 is an Arabidopsis importin β that functions in ABA signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis.

Abscisic acid (ABA), a plant hormone, is involved in responses to environmental stresses such as drought and high salinity, and is required for stress tolerance. ABA is synthesized de novo in response to dehydration. 9-cis-epoxycarotenoid dioxygenase (NCED) is thought to be a key enzyme in ABA biosynthesis. Here we demonstrate that the expression of an NCED gene of Arabidopsis, AtNCED3, is indu...

متن کامل

The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response.

We have previously shown that the Arabidopsis (Arabidopsis thaliana) RING-H2 E3 ligase RHA2a positively regulates abscisic acid (ABA) signaling during seed germination and postgerminative growth. Here, we report that RHA2b, the closest homolog of RHA2a, is also an active E3 ligase and plays an important role in ABA signaling. We show that RHA2b expression is induced by ABA and that overexpressi...

متن کامل

Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1) is a member of the basic domain leucine zipper (bZIP)-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA), dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 75 3  شماره 

صفحات  -

تاریخ انتشار 2013